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We show that in the severe slowing-down temperature regime the relaxation of antiferromagnetic rings and
similar magnetic nanoclusters is governed by the quasicontinuum portion of their quadrupolar fluctuation
spectrum and not by the lowest excitation lines. This is at the heart of the intriguing near-universal power-law
temperature dependence of the electronic correlation frequency �c with an exponent close to 4. The onset of
this behavior is defined by an energy scale which is fixed by the lowest spin gap �0. This explains why the
experimental curves of �c for different cluster sizes and spins nearly coincide when T is rescaled by �0.
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I. INTRODUCTION

A central issue for the control and manipulation of elec-
tronic spin degrees of freedom in the field of molecular
nanomagnetism1 and related areas is the understanding and
characterization of the various microscopic mechanisms of
relaxation and decoherence which stem from the interactions
with the underlying degrees of freedom of the host lattice. It
is by now well established that in the large majority of mag-
netic clusters, the relaxation of the magnetization shows a
dramatic slowing down which sets in already at relatively
high temperatures T and is characterized by a single elec-
tronic frequency cutoff �c.

1–3 While the majority of freezing
mechanisms reported in the literature �e.g., onsite anisotropy
in single molecule magnets,1 anisotropy and critical fluctua-
tions in single chain magnets,1 and phonon trapping in Ni10
�Ref. 4�� has been understood to a large extent on the basis of
the nature of the lowest excitations, the case of antiferromag-
netic rings �AFMRs� has been exceptional and very intrigu-
ing. Indeed, as shown by the nuclear magnetic resonance
�NMR� experiments by Baek et al.,5 in the regime where the
dramatic slowing-down effect takes place, �c follows a near-
universal power-law T dependence with an exponent close to
4, a behavior clearly inconsistent with a relaxation scenario
based on the lowest excitation lines. It is also striking that
the experimental curves of �c from various magnetic rings
with different sizes and spins s�1 /2 nearly coincide when T
is rescaled by the lowest spin gap �0. On the theoretical side,
the first microscopic calculation of �c in AFMRs was given
by Santini et al.,2 who concluded on this problem that the
relevant T regime is too narrow to substantiate any power-
law scaling and that instead �c is approximately exponential
in 1 /T.

Here we present a different microscopic theory which
supports the scaling hypothesis of Baek et al.5 and resolves
its physical origin in a clear and transparent way. Our central
key finding is that in the severe slowing-down T regime, the
relaxation is not governed by the lowest excitation lines of
the quadrupolar spectral density but by a forest of quasicon-
tinuum excitations at higher energies �cf. Fig. 2�. This is at

the heart of the power-law temperature dependence of �c
with an exponent which is close to 4 �cf. Eq. �12��. The onset
of this behavior is defined by an energy scale which is fixed
by the lowest spin gap �0, and this explains why curves from
different rings fall almost on top of each other when T is
rescaled by �0. The present theory is corroborated by a
model calculation of the nuclear spin-lattice relaxation rate
1 /T1 which includes one-phonon, two-phonon, as well as
Raman processes and shows excellent agreement with the
experimental data for the Cr8, Fe6Li, and Fe6Na clusters.

Our theory is based on the formalism developed in Ref. 3.
The advantage of this method is that it is based on an ana-
lytical formula which gives �c in terms of a frequency over-
lap between an electronic and a phononic spectral density
function �cf. Eqs. �3� or �5� below�. Thus by monitoring the
variation in these spectra with T and � one is able to identify
the dominant relaxation channels in each T regime of inter-
est. The central approximation for the derivation of this ana-
lytical formula of �c is that the spin Hamiltonian H0 com-
mutes with the total magnetization Sz of the cluster. For the
majority of magnetic clusters reported in the literature this
approximation is an excellent one for the study of relaxation
phenomena at not too low T �T�1 K�. Indeed, the dominant
energy scale in the problem is set by the isotropic Heisenberg
exchange and very often by a uniaxial onsite anisotropy.
There exist several types of anisotropic interactions which do
not conserve Sz, but these are typically very small ��1 K�
and thus play a significant role only at very low T. Thus,
although the present work is devoted to the slowing-down
mechanism in AFMRs, the method presented here can be
applied to the majority of magnetic clusters reported in the
literature. In particular, we will argue that the slowing-down
mechanism in AFMRs must be common in the general class
of antiferromagnetic nanomagnets �which includes, e.g.,
grids and other clusters� due to their very similar spectral
structure �cf. below�.

II. METHOD AND MODEL

We consider a magnetic ring with an even number N of
spins s�1 /2 �Ref. 6� described by the Hamiltonian
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H0 = J�
i

si · si+1 + g�BBSz �1�

with periodic boundary conditions. The first term describes
the antiferromagnetic �J�0� exchange between nearest-
neighbor spins, the second is the Zeeman energy in a field
B=Bez, S=�isi is the total spin, g�2, and �B is the Bohr
magneton. It is known7–9 that the energy spectrum of H0 is
bounded from below by an excitation band ES��0S�S
+1� /2, where �0�4J /N �cf. Ref. 9 for the validity range of
this scaling� is the lowest singlet-triplet gap. At higher ener-
gies there appears a forest of quasicontinuum excitations
which set in progressively above the lowest band. This dense
spectral structure above a certain energy scale is very com-
mon in finite unfrustrated antiferromagnets10,11 and, as we
show below, affects the relaxational behavior in a very char-
acteristic way.

We are interested in the damping of the equilibrium fluc-
tuations of the total magnetization Sz at not too low T and for
��e�g�BB�J. This damping is triggered by the �phonon-
driven� fluctuating portion of various anisotropies. Here we
consider the quadrupolar spin-phonon channel2,12–14 which
we write in the general form

Vs-ph = �
i=1

N

Q�si� · ��ri� � �
i=1

N

�
m=−2

2

Qim
† 	im, �2�

where ��ri� are functions of the local strains or rotation
fields and Qm�si� are the quadrupolar operators Q
2�s�=s


2 ,
Q
1�s�= �s
sz+szs
� /2, and Q0�s�=sz

2.
It has been found, both experimentally1,5 and

numerically,2 that the damping of Sz is monoexponential �or
Markovian� in a large number of nanomagnets. The physical
origin of this central feature has been shown3 to arise from a
dynamical decoupling of Sz from the remaining slow degrees
of freedom which, in turn, follows from the discreteness of
the energy spectrum and the conservation law �Sz ,H0�=0.
According to the general expression �27� of Ref. 3, �c is
given by

�c =
�

�0
�

mi,m�i�
�

0




d��JFimF
i�m�
† �− ���J	im

† 	i�m�
���� , �3�

where i�Fim��Sz ,Qim�=mQim,15 �=1 /kBT, and �0
��	�Sz

2
 is the isothermal susceptibility. Thus �c is propor-
tional to the frequency overlap between the absorption
�−���0� coefficient JFimF

i�m�
† �−��� and the emission coeffi-

cient J	im
† 	i�m�

���� of the host lattice.16 As we show below,

this formulation is very fruitful since it allows one to identify
the frequency regime �or the excitations� which gives the
dominant contribution to �c in the severe slowing-down T
regime.

To proceed we shall make the reasonable assumption that
the strain fields �e.g., local librations of the ligand groups�
are uncorrelated between different magnetic sites, i.e.,

J	im
† 	i�m�

���� = J	im
† 	im�

�����ii� �4�

�below we drop the site indices since all operators shall refer
to a single site�. We further note that the SU�2� invariance of

H0 at B=0 necessitates that JQmQ
m�
† ���=JQ1Q1

†����mm�. Since

this remains true at finite B for kBT���e, we may replace
Eq. �3� by

�c =
10N

�2 �
0




d��
Js�− ���

	�Sz
2


J	̄†	̄���� , �5�

where Js����JQ1Q1
†��� and

J	̄†	̄��� � �
m

m2J	m
† 	m

�����
m

m2, �6�

which defines implicitly an average coupling field 	̄�r , t�.
For our purposes we use a simple Debye model consisting

of three acoustic branches with a common sound velocity c
and a Debye cutoff �D �cf. below� and keep from the strain
tensor12–14 � only its isotropic �scalar� portion

��r,t� � � · u =� �

2Mc
�
k�

�k�ei�k·r+�k�t�ak�
† + H.c.� ,

�7�

where u�r , t� denotes the displacement field, M is the total
mass of the crystal, � runs over the three polarization states,

and �k�=c
k
. We may then expand 	̄�r , t� as

	̄�r,t� � v1��r,t� + v2�2�r,t� , �8�

where v1 and v2 define two spin-phonon coupling energy
parameters whose importance will become clear below.
Since Js��� is sharply peaked at the Bohr frequencies �B of
the cluster, i.e., Js���=��B

Js���B����−�B�, we may rewrite
Eq. �5� as

�c

10N
= �

�B�0

Js��− �B�
	�Sz

2

� v1

2

�2J����B� +
v2

2

�2J�2�2��B�� . �9�

Using the statistical factor n���= �e���−1�−1 and the mass
density �m, we have for 0����D

J����� =
3

2�

�

�mc5n����3 � J1ph��� , �10�

which is the contribution from direct one-phonon processes,
while J�2�2��� is the sum of the two-phonon and Raman
contributions given, respectively, by

J2ph��� = A�
0

�

d����3n������ − ���3n�� − ���

JR��� = 2A�
�

�D+�

d����3n������� − ��3�n��� − �� + 1� ,

�11�

where A� 9
4�3

�2

�m
2 c10 . These processes are represented sche-

matically in Fig. 1.
Equations �9�–�11� are the starting point of our calcula-

tions for �c. The quadrupolar spectral density Js��� is ob-
tained by a full thermodynamic calculation using exact di-
agonalizations.
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III. SLOWING-DOWN EFFECT AND NEAR-UNIVERSAL
POWER-LAW SCALING

Figure 2 shows Js�−��, J1ph���, J2ph���, and JR��� for
Cr8 at ��e=0.066�0 and for �a� kBT=0.19�0 and �b� 2.22�0.
The values of the parameters used here are the ones that fit

the 1 /T1 data �cf. Table I�. Apart from identifying a number
of excitation lines such as L1 �transitions within the lowest
triplet�, L2 �transitions from the lowest triplet to the lowest
quintet�, and L3 �transitions from the lowest singlet to the
lowest quintet�,17 we find a number of general features which
originate in the overall spectral structure of AFMRs de-
scribed above. We first emphasize the increasingly gapped
structure at low � and T, and the fact that Js�−�� has essen-
tially no weight below the line L2. This structure is altered
very quickly by thermal excitations since the latter increase
the number of available resonant channels and thus give rise
to a dense fluctuation spectrum at higher T. Importantly,
Js�−�� remains appreciable over an overall bandwidth of
��max�10–20�0. Given now the behavior of the phononic
density �cf. Fig. 2� the relaxation process can be understood
as follows. At kBT���e��0 the system is essentially
opaque to the available �thermally excited� phonons since
there is no appreciable overlap between Js�−�� and J1ph���.
Only the Zeeman line L1 contributes, giving �c��e

3 / �e���e

−1�. However, as soon as the one-phonon spectral peak
reaches the quasicontinuum regime �above the line L2�, sig-
nificant number of spin-phonon resonant channels are
quickly thermally activated. In fact, Fig. 2�b� shows that
J1ph��� samples almost the entire electronic spectral weight
up to �max already at kBT�2�0. This marks the existence of
a special regime 0.2�0�kBT�2�0, where a dramatic
change in �c by 3 and 4 decades �cf. Fig. 3� takes place. We
emphasize here that the relaxation process in this T regime is
driven by the quasicontinuum portion of the quadrupolar
spectrum and is minimally affected by the lowest excitation
lines. This shows that �c is not a nearly exponential function

−ω
ω’

ω’ω’
ω’ω ω

(a) One−phonon (b) Two−phonon (c) Raman

ω

ω

ω−

FIG. 1. �Color online� Schematic representation of the three
lowest-order processes which contribute to �c for any given absorp-
tion frequency � of the nanomagnet. �a� The one-phonon absorption
process is proportional to the average phonon energy density
�����n���, where ���� is the phonon density of states and n���
= �exp�����−1�−1 is the Bose-Einstein distribution function. �b�
The two-phonon absorption process is proportional to the integral
�d���������n������−������−���n��−���. �c� The inelastic-
scattering Raman process is proportional to the integral
�d���������n�������−������−���n���−��+1�.
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FIG. 2. �Color online� The origin of the dramatic slowing-down
effect in AFMRs demonstrated here for the Cr8 cluster at �a� kBT
=0.19�0 and �b� 2.22�0, with ��e=0.066�0 and ��D=10J. The
correlation frequency �c is proportional �cf. Eqs. �3� or �5�� to the
overlap between the quadrupolar spin density Js�−�� �series of �
peaks shown here with a logarithmic mesh in �� and the phononic
density J	̄†	̄��� which includes one-phonon �solid red�, two-
phonon �dotted red�, and Raman �dashed red� processes. We also
show �thick solid blue line� the integrated density �0

�d��Js�−���.
The lowest three groups of excitation lines at low T are denoted by
L1, L2, and L3 �cf. text�.
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FIG. 3. �Color online� Near-universal behavior of �c vs kBT /�0

for rings with different N and s. The dramatic slowing down �by 3
and 4 decades� takes place in the regime 0.2�0�kBT�2�0, where
�c follows Eq. �12�. The limits of this distinctive T regime can be
understood by looking at Fig. 2. It begins when the one-phonon
spectral peak starts overlapping the quasicontinuum portion of the
quadrupolar density and terminates when it has sampled its entire
bandwidth. At kBT�2�0, �c�T �Raman processes or high-
frequency phonons alter this behavior�, while at very low T, �c

��e
3 / �e���e −1� �cf. text�.

THEORY OF SEVERE SLOWDOWN IN THE RELAXATION… PHYSICAL REVIEW B 79, 064421 �2009�

064421-3



in 1 /T in this regime. In fact, we may go one step further and
inquire into the observed power-law scaling by employing a
steepest-descent expansion in Eq. �5� which relies on two
central ingredients: �i� the dominant contribution to the over-
lap comes from the regime around the one-phonon peak
��p�T��2.82kBT �note that Fig. 2 is in logarithmic scale�
and �ii� the quasicontinuum character of Js�−�� in the re-
spective T and � regimes. To leading order

�c � T4f�T� , �12�

where f�T��Js�−�p�T� ,T� /�0T and the strong T4 prefactor
emerges from the functional form of J1ph�� ,T� alone. The
function f�T� varies with N and s but shows always a much
weaker �sublinear� T dependence. This can be seen by our
calculations shown in Fig. 4 �cf. text below� which are in
excellent agreement with experimental data. Hence, the
T3.5
0.5 scaling law reported in Ref. 5 is largely due to the
above T4 leading prefactor. It is thus essentially a character-
istic fingerprint of one-phonon acoustic processes and of the
quasicontinuum nature of the electronic quadrupolar spec-
trum at high energies.

All of the above features are demonstrated in Fig. 3 which
shows the one-phonon contribution to �c for various N and s.
Indeed, one identifies a distinctive regime 0.2�0�kBT
�2�0, where �c shows a dramatic drop by 3 and 4 decades.
Figure 3 explains yet another of the central findings of Baek
et al.,5 namely, that all curves fall almost on top of each other
when plotted against kBT /�0. This is clearly due to the over-
all similar spectral structure of AFMRs and, in particular, due
to the fact that the forest of quasicontinuum excitations sets
in at an energy scale fixed by �0�4J /N �and not by J�.

We should add here that the details of the low-energy
spectrum such as the character of the lowest L band or the
spin-wave E band8 do not play any special role compared to
other excitations. The quasicontinuum portion of the spec-
trum contains excitations from and toward both the L and E
bands but it is the global dense aspect of the spectrum that
matters.

IV. COMPARISON TO NUCLEAR SPIN-LATTICE
RELAXATION RATE DATA

Let us now describe our calculations for 1 /T1 and com-
pare to the experimental data for Fe6Li, Fe6Na, and Cr8. We
begin with the expression2,5,18

1/T1 = AzzJs0zs0z
��L� =

Azz

N2 JSzSz
��L� �13�

where s0 is the ionic spin with the shortest distance r0 from
the nuclear spin and Azz=�2�e

2�n
2 /r0

6 is the corresponding
hyperfine amplitude.19 Using3 JSzSz

��L�=2	�Sz
2


�c

�c
2+�L

2 and
�mol=NAg2�B

2�	�Sz
2
 �where NA is Avogadro’s number�, we

get

R �
1

T1�molT
= 4585.3

�n
2

N2r0
6

�c

�c
2 + �L

2 , �14�

where 1 /T1 is given in milliseconds, �n is given in MHz/T,
�molT is given in cm3 K /mol, r0 is given in Å, and �c,L is
given in MHz. According to Eq. �14�, the fit of r0 is con-
trolled by the magnitude of 1 /T1, while the values of v1 and
v2 of Eq. �9� can be found by adjusting the position and the
width of the 1 /T1 peak. We should note however that v2
affects �c only at the high-T side of the peak where high-
energy phonons start to play a role and thus its estimate is
generally less accurate.

Figure 4 shows our optimal fits to the data of R and �c for
Cr8 and Fe6Li, along with the separate contributions of direct
two-phonon and Raman processes. Similar fits �not shown
here� are obtained for Fe6Na. The corresponding estimates
for r0, v1, and v2 are given in Table I and are of the correct
order of magnitude. As to the value of the Debye cutoff, we
find that our fits remain very good for ��D�10J,20 which is
consistent with the reported estimates of the Debye tem-
perature �D �cf. Table I�. The agreement at intermediate T,
where the enhancement of 1 /T1 takes place, is remarkably
good. In particular, we find that the relaxation is dominated
by one-phonon processes up to kBT�2�0 for Cr8 ��0 /kB
�9.607 K� and up to �6�0 for Fe6Li ��0 /kB�14.526 K�.
On the other hand, the power-law scaling �dashed-double dot
blue lines� is valid up to kBT�2�0 for both clusters. We also
find that our model does not account for the behavior at very
high T. This can be either due to another contribution to 1 /T1
�e.g., electronic T2 processes18,21,22 not included in Eq. �14��
or due to the actual details of the high-energy phonon modes
which should play a role at high T. Finally, the discrepancy
at very low T in Cr8 arises from an additional peak in 1 /T1
which is currently not understood.

FIG. 4. �Color online� Comparison between theory �solid red
lines� and experimental data �symbols� for R �cf. Eq. �14�� and �c

for Cr8 �left� and Fe6Li �right�. The one-phonon �dashed�, two-
phonon �dotted�, and Raman �dashed dotted� contributions to �c are
also shown, along with the respective power-law scalings �dashed-
double dot, blue lines� for 0.2�0�kBT�2�0.
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V. CONCLUSIONS

We have presented a microscopic theory which identifies
the mechanism responsible for the dramatic slowing-down
effect observed in antiferromagnetic wheels. Our central key
result is that in this class of nanomagnets the relaxation is
driven by the quasicontinuum portion of the quadrupolar
spectrum and not by the low-lying excitations. This is at the
heart of the intriguing power-law T dependence of the elec-
tronic correlation frequency �c with an exponent close to 4.
The onset of this scaling is fixed by the lowest spin gap �0
�4J /N �and not by J�, and this explains why the experimen-
tal curves of �c for different cluster sizes and spins nearly
coincide when T is rescaled by �0. Since the spectral struc-
ture of AFMRs is very common in finite-size antiferromag-
nets most of the above qualitative features must carry over to
other antiferromagnetic clusters as well. Hence we believe

that the present slowing-down mechanism of AFMRs is
common in the more general class of antiferromagnetic clus-
ters. More generally, the present theory can be applied to the
majority of clusters reported in the literature for T�1 K. It
can also be extended to clusters with s=1 /2 by using an
appropriate relaxation channel.6 It is thus our hope that it will
be valuable for further investigations on the understanding
and characterization of relaxation mechanisms in magnetic
nanoclusters.

ACKNOWLEDGMENTS

We thank F. Mila and M. Belesi for fruitful discussions.
The work at EPFL was supported by the Swiss National
Fund. Work at the Ames Laboratory was supported by the
Basic Energy Sciences, Department of Energy under Con-
tract No. DE-AC02-07CH11358.

*ioannis.rousochatzakis@epfl.ch
1 D. Gatteschi, R. Sessoli, and J. Villain, Molecular Nanomagnets

�Oxford University Press, Oxford, 2006� �and references
therein�.

2 P. Santini, S. Carretta, E. Liviotti, G. Amoretti, P. Carretta, M.
Filibian, A. Lascialfari, and E. Micotti, Phys. Rev. Lett. 94,
077203 �2005�.

3 I. Rousochatzakis, Phys. Rev. B 76, 214431 �2007�.
4 S. Carretta, P. Santini, G. Amoretti, M. Affronte, A. Candini, A.

Ghirri, I. S. Tidmarsh, R. H. Laye, R. Shaw, and E. J. L.
McInnes, Phys. Rev. Lett. 97, 207201 �2006�.

5 S. H. Baek, M. Luban, A. Lascialfari, E. Micotti, Y. Furukawa, F.
Borsa, J. van Slageren, and A. Cornia, Phys. Rev. B 70, 134434
�2004�.

6 Magnetic clusters with s=1 /2 must be treated separately since
they do not have a quadrupole moment and thus a different
relaxation channel �e.g., dipolar channel or fluctuating
Dzyaloshinskii-Moriya interactions� must be invoked.

7 J. Schnack and M. Luban, Phys. Rev. B 63, 014418 �2000�.
8 O. Waldmann, Phys. Rev. B 65, 024424 �2001�.
9 L. Engelhardt and M. Luban, Phys. Rev. B 73, 054430 �2006�.

10 C. Lhuillier, arXiv:cond-mat/0502464 �unpublished�.
11 For frustrated clusters see, e.g., I. Rousochatzakis, A. M.

Läuchli, and F. Mila, Phys. Rev. B 77, 094420 �2008�.
12 J. Villain, F. Hartman-Boutron, R. Sessoli, and A. Rettori, Euro-

phys. Lett. 27, 159 �1994�; F. Hartmann-Boutron, P. Politi, and
J. Villain, Int. J. Mod. Phys. B 10, 2577 �1996�.

13 M. N. Leuenberger and D. Loss, Phys. Rev. B 61, 1286 �2000�.
14 E. M. Chudnovsky, D. A. Garanin, and R. Schilling, Phys. Rev.

B 72, 094426 �2005�.
15 As expected, only the m�0 components of Q can drive the

relaxation of Sz.
16 Here, the spectral density for any pair of operators A and B is

defined as JAB���=�−


 dtei�t	A�0�B�t�
.

17 Note that there is no absorption line at �0
��e since transitions
from the ground state to the lowest triplet are forbidden by sym-
metry for our quadrupolar spin-phonon coupling.

18 I. Rousochatzakis, Ph.D. thesis, Iowa State University, 2005.
19 For 7Li NMR in Fe6Li, one must multiply Eq. �13� with an extra

factor of N=6 since the nuclear spin resides at the center of the
ring and thus all ions contribute equally to the nuclear relax-
ation.

20 This is an approximate lower bound of �D since, as can be
understood from Fig. 2, larger values do not alter �c quantita-
tively at intermediate T.

21 L. Spanu and A. Parola, Phys. Rev. B 72, 212402 �2005�.
22 B. Pilawa, R. Boffinger, I. Keilhauer, R. Leppin, I. Odenwald,

W. Wendl, C. Berthier, and M. Horvatić, Phys. Rev. B 71,
184419 �2005�.

23 G. L. Abbati et al., Inorg. Chem. 36, 6443 �1997�; A. Caneschi
et al., Angew. Chem., Int. Ed. Engl. 34, 467 �1995�; J. van
Slageren et al., Chem.-Eur. J. 8, 277 �2002�.

24 M. Affronte, J. C. Lasjaunias, and A. Cornia, Eur. Phys. J. B 15,
633 �2000�; M. Affronte, T. Guidi, R. Caciuffo, S. Carretta, G.
Amoretti, J. Hinderer, I. Sheikin, A. G. M. Jansen, A. A. Smith,
R. E. P. Winpenny, J. van Slageren, and D. Gatteschi, Phys. Rev.
B 68, 104403 �2003�.

TABLE I. Known data �Refs. 23 and 24� �first three columns� and fitting parameters for Fe6Li, Fe6Na, and
Cr8. Here c̃� c�cm/s�

2�105 .

Cluster
�m

�g /cm3�
�D

�K�
J

�K�
v1 / c̃5/2

�K�
v2 / c̃5

�K�
r0

�Å�

Fe6Li 1.45 217.8 21 0.498 2.861 4.59

Fe6Na 1.42 209.8 28 0.200 1.277 4.16

Cr8 1.08 154
10 17.2 1.124 14.376 4.10
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